

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Developer notes

Notes on how the repo / database is organized, intended for a new developer.

Overall organization

	Tables that are about similar things are grouped into a schema. Each schema is
defined in a .py file. Example: all the tables related to quality metrics
are part of the common_metrics schema and are defined in common_metrics.py
in common module.

	The common module only contains schema that will be useful for everyone in
the lab. If you want to add things to common, first check with Loren.

	For analysis that will be only useful to you, create your own schema.

Types of tables

NWB-related

	Data tier: dj.Imported

	Primary key: foreign key from Session

	Non-primary key: object_id

	Each NWB-related table has a corresponding data object in the NWB file. This
object can be referred by a unique hash called an _object ID_.

	These tables are automatically populated when an NWB file is first ingested
into the database. To enable this, include the populate call in the make
method of Session.

	Required methods:
- make: must read information from an NWB file and insert it to the table.
- fetch_nwb: retrieve the data specified by the object ID; search the repo

for examples.

	Example: Raw, Institution etc

Pipeline

	Each analysis pipeline defined by a schema. A typical pipeline has at least
three tables:
- _Parameters_ table

	Naming convention: should end with Parameters (e.g. MetricParameters)

	Data tier: dj.Manual

	Function: holds a set of parameters for the particular analysis.

	Primary key: x_params_name (str); x is the name of the pipeline (e.g.
metric_params_name).

	Non-primary key: x_params (dict; use blob in the definition); holds
the parameters as key-value pairs.

	Required method: insert_default to insert a reasonable default parameter
into the table.

	Selection table
- Naming convention: should end with Selection (e.g. MetricSelection)
- Data tier: dj.Manual
- Function: associates a set of parameters to the data to be applied. For

example, in the case of computing quality metrics, one might put extracted
waveforms and a set of metrics parameters as a single entry in this table.

	Primary key: foreign key from a table containing data and the Parameters
table (i.e. Selection tables are downstream of these two tables).
- Of course, it is possible for a Selection table to collect information

from more than one Parameter table. For example, the Selection table for
spike sorting holds information about both the interval (SortInterval)
and the group of electrodes (SortGroup) to be sorted.

	Usually no other key needs to be defined

	Data table
- Data tier: dj.Computed
- carries out the computation specified in the Selection table when

populate is called.

	The primary key should be foreign key inherited from the Selection table.
The non-primary key should be analysis_file_name inherited from
AnalysisNwbfile table (i.e. name of the analysis NWB file that will hold
the output of the computation).

	Required methods:
- make: carries out the computation and insert a new entry; must also

create an analysis NWB file and insert it to the AnalysisNwbfile
table. Note that this method is never called directly; it is called via
populate.

	delete: extension of the delete method that checks user privilege
before deleting entries as a way to prevent accidental deletion of
computations that take a long time (see below).

	Example: QualityMetrics

	Why have the Parameters table? Because one might want to repeat an analysis
with different sets of parameters. This way we keep track of everything. Also
encourages sharing of parameters.

	_Why have the Selection table instead of going directly from Parameter table
to Data table?_ one still has to manually pass in the data and the parameters
to use for the computation (e.g. as an argument to populate. Since this is
required, defining it first in the Selection table is no less efficient. In
addition, multiple entries in Selection table can be run in parallel when
populate is called with reserve_jobs=True option.

Multi-pipeline

	These are tables that are part of many pipelines.

	Examples: IntervalList (whose entries define time interval for any
analysis), AnalysisNwbfile (whose entries define analysis NWB files created
for any analysis), Sortings (whose entries include many types of spike
sorting, such as uncurated, automatically curated, manually curated etc)

	Data tier: dj.Manual

	Note that because these are stand-alone manual tables, they are not part of
the dependency structure. This means one should try to include enough
information such that they can be linked back to the pipelines.

Integration with NWB

NWB files

	NWB files contain everything about the experiment and form the starting point
of all analysis

	stored in /stelmo/nwb/raw

	A copy of the NWB file that only contains pointers to objects in original file
is made in the same directory; the name has an extra _ at the end, e.g.
beans20190718_.nwb; this file is made because we want to create object IDs
to refer to parts of the NWB file, but don’t want to store these object IDs in
the original file to avoid file corruption

	Listed in the Nwbfile table

Analysis NWB files

	These are NWB files that hold the results of intermediate steps in the analysis.

	Examples of data stored: filtered recordings, spike times of putative units
after sorting, or waveform snippets.

	Stored in /stelmo/nwb/analysis

	Listed as an entry in the AnalysisNwbfile table.

Note: for both types of NWB files, the fact that a file is not listed in the
table doesn’t mean the file does not exist in the directory. You can ‘equalize’
the list of NWB files and the list of actual files on disk by running cleanup
method (i.e. it deletes any files not listed in the table from disk).

Reading and writing recordings

	Right now the recording starts out as an NWB file. This is opened as a
NwbRecordingExtractor, a class in spikeinterface. When using sortingview
for visualizing the results of spike sorting, this recording is saved again in
HDF5 format. This duplication should be resolved in the future.

Naming convention

There are a few places where a name needs to be given to objects. Follow these rules:

	Recordings: should be given unique names. As such we have decided to simply
concatenate everything that went into defining it separated by underscore,
i.e. NWBFileName_IntervalName_ElectrodeGroupName_PreprocessingParamsName.

	Sortings: should be unique. Simply concatenates
SpikeSorter_SorterParamName to the name of the recording.

	Waveforms: should be unique. Concatenates WaveformParamName to the name of
the sorting.

	Quality metrics: should be unique. concatenates MetricParamName to the
name of the waveform.

	Analysis NWB files: same as the objects, i.e. the analysis NWB file that
holds recording is named
NWBFileName_IntervalName_ElectrodeGroupName_PreprocessingParamsName.nwb

	An alternative way to get unique names that are not as long is to generate a
UUID for each file. Currently each recording and sorting are given such IDs.

	A method that will not be explicitly called by the user should start with _

Time

	All valid intervals of any kind must be inserted into the IntervalList table
prior to being used.

	Store an interval as [start_time, stop_time]. The list can be nested for a
set of disjoint intervals.

	Some recordings have explicit timestamps associated with each sample. This is
obtained by a system called PTP. In this system, time 0 is defined as 1 Jan
1970. Other (typically older) recordings do not and their times must be
inferred from the TTL pulses from the camera (ask if this doesn’t make sense).

	What is a valid interval? Because our experiments can be long, sometimes there
are missing samples. This can be due to many reasons, such as the commutator
connection being faulty for a few milliseconds. As a result we have ‘holes’ in
our data. A valid interval is a start time and an end time between which there
are no holes.

Misc

	You may want to create a development/testing environment independent of the
lab datajoint server. To do so, run your own datajoint server with Docker. See
[example](./notebooks/docker_mysql_tutorial.ipynb).

	Datajoint is unable to set delete permissions on a per-table basis. In other
words, if a user is able to delete entries in a given table, she can delete
entries in any table in the schema. Some tables that hold important data
extends the delete method to check if the datajoint username matches a list
of allowed users when delete is called. If you think this would be useful
for your table, see examples in common_spikesorting.py.

	In general, use numpy style docstring.

	Don’t overload a single .py file. For each pipeline make a new .py file
and define your schema / tables.

	Some of the ‘rules’ above may need to change or be inappropriate for some
cases. If you want to start a discussion, talk to Loren.

Making a release

	In pyproject.toml, under [project], update the version key to the new
version string.

	In CITATION.cff, update the version key to the new version string.

	Make a pull request with these changes.

	After merging these changes, run git tag –sign -m “spyglass ${release}”
${release} origin/master where ${release} is replaced with the new version
string.

	This step requires a
[GPG signing key](https://docs.github.com/en/authentication/managing-commit-signature-verification/generating-a-new-gpg-key).

	Publish the new release tag. Run git push origin ${release}.

	Generate distribution packages and upload them to PyPI following [these
instructions](https://packaging.python.org/en/latest/tutorials/packaging-projects/#generating-distribution-archives).

	Make a new release on GitHub with the new release tag:
<https://docs.github.com/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository>

TODO

	Fetch nwb method is currently implemented for each table. This is unnecessary
because (1) what matters is the query, not the table the method is attached
to; and (2) you either look up the Nwbfile or the AnalysisNwbfile table for
it, so really there are only two versions. It would be better to just have two
standalone functions. Or just one that figures out which NWB file to look up.

 # Spyglass

Spyglass is a data analysis framework that facilitates the
storage, analysis, and sharing of neuroscience data to support
reproducible research. It is designed to be interoperable with the NWB
format and integrates open-source tools into a coherent framework.

Installation

To install to this project, see [Installation](./installation/).

Contributing

For contribution instructions see [How to Contribute](./contribute.md)

Citing Spyglass

Kyu Hyun Lee, Eric Denovellis, Ryan Ly, Jeremy Magland, Jeff Soules,
Alison Comrie, Jennifer Guidera, Rhino Nevers, Daniel Gramling, Philip
Adenekan, Ji Hyun Bak, Emily Monroe, Andrew Tritt, Oliver Rübel, Thinh
Nguyen, Dimitri Yatsenko, Joshua Chu, Caleb Kemere, Samuel Garcia,
Alessio Buccino, Emily Aery Jones, Lisa Giocomo, and Loren Frank.
‘Spyglass: A Data Analysis Framework for Reproducible and Shareable
Neuroscience Research.’ (2022) Society for Neuroscience, San Diego, CA.

 # Installation

Production

Install [Production](./production.md) if you want to use
the officially released version of spyglass. This is meant for regular
end-users. Click here to for instructuons -
[Production](./production.md)

Local

Install [Local](./local.md) if you want to work on the
development-version in order to add features. This is meant for anyone
interested in making updates to the code base. Click here to for
instructuons - [Local](./local.md)

 # Local Installation

Clone Repository

For local development, first pull down the code base -

`bash
git clone https://github.com/LorenFrankLab/spyglass.git
`

Set up and activate a conda environment from environment.yml:

`bash
cd spyglass
conda env create -f environment.yml
conda activate spyglass
`

Install this repository:

`bash
pip install -e .
`

Additional Packages

Some of the pipeline requires installation of additional packages. For example,
the spike sorting pipeline relies on spikeinterface. We recommend installing
it directly from the GitHub repo:

`bash
pip install spikeinterface[full,widgets]
`

You may also need to install individual sorting algorithms. For example, Loren
Frank’s lab at UCSF typically uses mountainsort4:

`bash
pip install mountainsort4
`

WARNING: If you are on an M1 Mac, you need to install pyfftw via conda
BEFORE installing ghostipy:

`bash
conda install -c conda-forge pyfftw
`

The LFP pipeline uses ghostipy:

`bash
pip install ghostipy
`

Setting up database access

	To use spyglass, you need to have access to a MySQL database. If your lab
already administers a database, connect to it by setting
[DataJoint](https://www.datajoint.org/) configurations. If you want to run
your own database, consult instructions in [datajoint tutorial](https://tutorials.datajoint.org/setting-up/get-database.html)
and/or [our tutorial notebook](../notebooks/docker_mysql_tutorial.ipynb).

	Add the following environment variables (e.g. in ~/.bashrc). The following
are specific to Frank lab so you may want to change SPYGLASS_BASE_DIR.

`bash
export SPYGLASS_BASE_DIR="/stelmo/nwb"
export SPYGLASS_RECORDING_DIR="$SPYGLASS_BASE_DIR/recording"
export SPYGLASS_SORTING_DIR="$SPYGLASS_BASE_DIR/sorting"
export SPYGLASS_VIDEO_DIR="$SPYGLASS_BASE_DIR/video"
export SPYGLASS_WAVEFORMS_DIR="$SPYGLASS_BASE_DIR/waveforms"
export SPYGLASS_TEMP_DIR="$SPYGLASS_BASE_DIR/tmp/spyglass"
export DJ_SUPPORT_FILEPATH_MANAGEMENT="TRUE"
`

Note that a local SPYGLASS_TEMP_DIR (e.g. one on your machine) will speed
up spike sorting, but make sure it has enough free space (ideally at least
500GB)

Before proceeding, run -

`bash
source ~/.bashrc
`

in order to persist the changes.

	Set up [kachery-cloud](https://github.com/flatironinstitute/kachery-cloud)
(Frank Lab members only). Once you have initialized a kachery-cloud
directory, add the following environment variables (again, shown for Frank
lab).

`bash
export KACHERY_CLOUD_DIR="$SPYGLASS_BASE_DIR/.kachery-cloud"
export KACHERY_TEMP_DIR="$SPYGLASS_BASE_DIR/tmp"
`

Before proceeding, run -

`bash
source ~/.bashrc
`

in order to persist the changes.

	Configure DataJoint. To connect to the
[DataJoint](https://www.datajoint.org/) database, we have to specify
information about it such as the hostname and the port. You should also
change your password from the temporary one you were given. Go to the config
directory, and run
[dj_config.py](https://github.com/LorenFrankLab/spyglass/blob/master/config/dj_config.py)
in the config folder. Then run
[dj_config.py](https://github.com/LorenFrankLab/spyglass/blob/master/config/dj_config.py)
terminal with your username:

`bash
cd config # change to the config directory
python dj_config.py <username> # run the configuration script
`

Finally, open up a python console (e.g. run ipython from terminal) and import
spyglass to check that the installation has worked.

 # Production Installation

Virtual Environment

It is recommended you install a [virtual
environment](https://en.wikipedia.org/wiki/Virtual_environment_software). There
are many options like
[conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)
and [venv](https://docs.python.org/3/library/venv.html). This installation
instruction will use
[conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html).

The instructions to install
[conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)
can be found at
https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html.
[Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)
can be used both for installing packages and for creating a
[virtual environment](https://towardsdatascience.com/introduction-to-conda-virtual-environments-eaea4ac84e28).

To create the environment after
[conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html)
is installed, run -

`bash
conda create -n spyglass-env python=3.9.0
`

The name selected here is spyglass-env. However, a different name can be used
if desired or necessary.

Now, it is time to activate the virtual environment. To start, run -

`bash
conda activate spyglass-env
`

Installing Spyglass

spyglass can be installed via
[pip](<https://en.wikipedia.org/wiki/Pip_(package_manager)>) off of
[pypi](https://pypi.org/project/spyglass-neuro/):

`bash
pip install spyglass-neuro
`

Additional Packages

Some pipelines require installation of additional packages. For example, the
spike sorting pipeline relies on spikeinterface. We recommend installing it
directly from the GitHub repo:

`bash
pip install spikeinterface[full,widgets]
`

You may also need to install individual sorting algorithms. For example, Loren
Frank’s lab at [UCSF](https://www.ucsf.edu/) typically uses mountainsort4:

`bash
pip install mountainsort4
`

WARNING: If you are on an M1 Mac, you need to install pyfftw via conda
BEFORE installing ghostipy:

`bash
conda install -c conda-forge pyfftw
`

The LFP pipeline uses ghostipy:

`bash
pip install ghostipy
`

Setting up database access

	To use spyglass, you need to have access to a MySQL database. If your lab
already administers a database, connect to it by setting
[DataJoint](https://www.datajoint.org/) configurations. If you want to run
your own database, consult instructions in
[datajoint tutorial](https://tutorials.datajoint.org/setting-up/get-database.html)
and/or [our tutorial notebook](../notebooks/docker_mysql_tutorial.ipynb).

	Add the following environment variables (e.g. in ~/.bashrc). The following
are specific to Frank lab so you may want to change SPYGLASS_BASE_DIR.

`bash
export SPYGLASS_BASE_DIR="/stelmo/nwb"
export SPYGLASS_RECORDING_DIR="$SPYGLASS_BASE_DIR/recording"
export SPYGLASS_SORTING_DIR="$SPYGLASS_BASE_DIR/sorting"
export SPYGLASS_VIDEO_DIR="$SPYGLASS_BASE_DIR/video"
export SPYGLASS_WAVEFORMS_DIR="$SPYGLASS_BASE_DIR/waveforms"
export SPYGLASS_TEMP_DIR="$SPYGLASS_BASE_DIR/tmp/spyglass"
export DJ_SUPPORT_FILEPATH_MANAGEMENT="TRUE"
`

Note that a local SPYGLASS_TEMP_DIR (e.g. one on your machine) will speed
up spike sorting, but make sure it has enough free space (ideally at least
500GB)

Before proceeding, run -

`bash
source ~/.bashrc
`

in order to persist the changes.

	Set up [kachery-cloud](https://github.com/flatironinstitute/kachery-cloud)
(if you are in Frank lab, skip this step). Once you have initialized a
kachery-cloud directory, add the following environment variables (again,
shown for Frank lab).

`bash
export KACHERY_CLOUD_DIR="$SPYGLASS_BASE_DIR/.kachery-cloud"
export KACHERY_TEMP_DIR="$SPYGLASS_BASE_DIR/tmp"
`

Before proceeding, run -

`bash
source ~/.bashrc
`

in order to persist the changes.

	Configure DataJoint. To connect to the
[DataJoint](https://www.datajoint.org/) database, we have to specify
information about it such as the hostname and the port. You should also
change your password from the temporary one you were given. Download
[dj_config.py](https://github.com/LorenFrankLab/spyglass/blob/master/config/dj_config.py)
from
https://github.com/LorenFrankLab/spyglass/blob/master/config/dj_config.py
and save locally as dj_config.py, to any folder. Instructions on how to
download a single file from github can be found at
https://stackoverflow.com/a/13593430/178550.
Then run dj_config.py in a terminal with your username -

`bash
cd config # change to the config directory
python dj_config.py <username> # run the configuration script
`

Finally, open up a python console (e.g. run ipython from terminal) and import
spyglass to check that the installation has worked.

 # Creating figurl views

Spike sorting recording view

```python
import spyglass.common as ndc
import spyglass.figurl_views as ndf

query = …

# To replace:
# (ndf.SpikeSortingRecordingView & query).delete()

ndf.SpikeSortingRecordingView.populate([(ndc.SpikeSortingRecording & query).proj()])
```

Spike sorting view

```python
import spyglass.common as ndc
import spyglass.figurl_views as ndf

query = …

# To replace:
# (ndf.SpikeSortingView & query).delete()

ndf.SpikeSortingView.populate([(ndc.SpikeSorting & query).proj()])
```


 # How to insert data into spyglass

In spyglass, every table corresponds to an object. An experimental session is
defined as a collection of such objects. When an NWB file is ingested into
spyglass, the information about these objects is first read and inserted into
tables in the common module (e.g. Institution, Lab, Electrode, etc).
However, not every NWB file has all the information required by spyglass. For
example, many NWB files do not contain any information about the
DataAcquisitionDevice or Probe because NWB does not yet have an official
standard for specifying them. In addition, one might find that the information
contained in the NWB file is incorrect and would like to modify it before
inserting it into spyglass without having to go through the time-consuming
process of re-generating the NWB file. For these cases, we provide an
alternative approach to inserting data to spyglass.

This alternate approach consists of two steps. First, the user must identify
entries that they would like to add to the spyglass database that exist
independently of any particular NWB file. For example, information about a
particular probe is stored in the ProbeType and Probe tables of
spyglass.common. The user can either:

	create these entries programmatically using DataJoint insert commands, for
example:

`python
sgc.ProbeType.insert1({
"probe_type": "128c-4s6mm6cm-15um-26um-sl",
"probe_description": "A Livermore flexible probe with 128 channels, 4 shanks, 6 mm shank length, 6 cm ribbon length. 15 um contact diameter, 26 um center-to-center distance (pitch), single-line configuration.",
"manufacturer": "Lawrence Livermore National Lab",
"num_shanks": 4,
}, skip_duplicates=True)
`

	define these entries in a special YAML file called entries.yaml that is
processed when spyglass is imported. One can think of entries.yaml as a
place to define information that the database should come pre-equipped prior
to ingesting any NWB files. The entries.yaml file should be placed in the
spyglass base directory. An example can be found in
examples/config_yaml/entries.yaml. It has the following structure:

`yaml
TableName:
- TableEntry1Field1: Value
TableEntry1Field2: Value
- TableEntry2Field1: Value
TableEntry2Field2: Value
`

For example,

`yaml
ProbeType:
- probe_type: 128c-4s6mm6cm-15um-26um-sl
probe_description: A Livermore flexible probe with 128 channels, 4 shanks, 6 mm shank length, 6 cm ribbon length. 15 um contact diameter, 26 um center-to-center distance (pitch), single-line configuration.
manufacturer: Lawrence Livermore National Lab
num_shanks: 4
`

Using a YAML file over programmatically creating these entries in a notebook or
script has the advantages that the YAML file maintains a record of what entries
have been added that is easy to access, and the file is portable and can be
shared alongside an NWB file or set of NWB files from a given experiment.

Next, the user must associate the NWB file with entries defined in the database.
This is done by cresqating a _configuration file_, which must: be in the same
directory as the NWB file that it configures be in YAML format have the
following naming convention: <name_of_nwb_file>_spyglass_config.yaml.

Users can programmatically generate this configuration file. It is then read by
spyglass when calling insert_session on the associated NWB file.

An example of this can be found at
examples/config_yaml/​​sub-AppleBottom_ses-AppleBottom-DY20-g3_behavior+ecephys_spyglass_config.yaml.
This file is associated with the NWB file
sub-AppleBottom_ses-AppleBottom-DY20-g3_behavior+ecephys.nwb.

This is the general format for the config entry:

`yaml
TableName:
- primary_key1: value1
`

For example:

`yaml
DataAcquisitionDevice:
- data_acquisition_device_name: Neuropixels Recording Device
`

In this example, the NWB file that corresponds to this config YAML will become
associated with the DataAcquisitionDevice with primary key
data_acquisition_device_name: Neuropixels Recording Device. This entry must
exist.

 # Merge Tables

Why

A pipeline may diverge when we want to process the same data in different ways.
Merge Tables allow us to join divergent pipelines together, and unify
downstream processing steps. For a more in depth discussion, please refer to
[this notebook](https://github.com/ttngu207/db-programming-with-datajoint/blob/master/notebooks/pipelines_merging_design_master_part.ipynb)
and related discussions [here](https://github.com/datajoint/datajoint-python/issues/151)
and [here](https://github.com/LorenFrankLab/spyglass/issues/469).

Note: Deleting entries upstream of Merge Tables will throw errors related to
deleting a part entry before the master. To circumvent this, you can add
force_parts=True to the
[delete function](https://datajoint.com/docs/core/datajoint-python/0.14/api/datajoint/__init__/#datajoint.table.Table.delete)
call, but this will leave and orphaned primary key in the master. Instead, use
spyglass.utils.dj_merge_tables.delete_downstream_merge to delete master/part pairs.

What

A Merge Table is fundamentally a master table with one part for each divergent
pipeline. By convention…

	The master table has one primary key, merge_id, a
[UUID](https://en.wikipedia.org/wiki/Universally_unique_identifier), and one
secondary attribute, source, which gives the part table name. Both are
managed with the custom insert function of this class.

	Each part table has inherits the final table in its respective pipeline, and
shares the same name as this table.


```python
from spyglass.utils.dj_merge_tables import _Merge

@schema
class MergeTable(_Merge):


definition = “””
merge_id: uuid
—
source: varchar(32)
“””


	class One(dj.Part):
	definition = “””
-> master
—
-> One
“””



	class Two(dj.Part):
	definition = “””
-> master
—
-> Two
“””








```

![Merge diagram](../images/merge_diagram.png)

How

Merging

The Merge class in Spyglass’s utils is a subclass of DataJoint’s [Manual
Table](https://datajoint.com/docs/core/design/tables/tiers/#data-entry-lookup-and-manual)
and adds functions to make the awkwardness of part tables more manageable.
These functions are described in the
[API section](../../api/src/spyglass/utils/dj_merge_tables/), under
utils.dj_merge_tables.

Restricting

In short: restrict Merge Tables with arguments, not the & operator.

	Normally: Table & “field=’value’”

	Instead: MergeTable.merge_view(restriction=”field=’value’”).

Caution. The & operator may look like it’s working when using dict, but
this is because invalid keys will be ignored. Master & {‘part_field’:’value’}
is equivalent to Master alone
([source](https://docs.datajoint.org/python/queries/06-Restriction.html#restriction-by-a-mapping)).

When provided as arguments, methods like merge_get_part and merge_get_parent
will override the permissive treatment of mappings described above to only
return relevant tables.

Building Downstream

A downstream analysis will ideally be able to use all diverget pipelines
interchangeably. If there are parameters that may be required for downstream
processing, they should be included in the final table of the pipeline. In the
example above, both One and Two might have a secondary key params. A
downstream Computed table could do the following:

```python
def make(self, key):



	try:
	params = MergeTable.merge_get_parent(restriction=key).fetch(‘params’)



	except DataJointError:
	params = default_params





processed_data = self.processing_func(key, params)




```

Note that the try/except above catches a possible error in the event params
is not present in the parent.

Example

First, we’ll import various items related to the LFP Merge Table…

`python
from spyglass.utils.dj_merge_tables import delete_downstream_merge, Merge
from spyglass.common.common_ephys import LFP as CommonLFP # Upstream 1
from spyglass.lfp.lfp_merge import LFPOutput # Merge Table
from spyglass.lfp.v1.lfp import LFPV1 # Upstream 2
`

Merge Tables have multiple custom methods that begin with merge. help can
show us the docstring of each

`python
merge_methods=[d for d in dir(Merge) if d.startswith('merge')]
help(getattr(Merge,merge_methods[-1]))
`

We’ll use this example to explore populating both LFPV1 and the LFPOutput
Merge Table.

```python
nwb_file_dict = { # We’ll use this later when fetching from the Merge Table


“nwb_file_name”: “tonks20211103_.nwb”,




}
lfpv1_key = {


**nwb_file_dict,
“lfp_electrode_group_name”: “CA1_test”,
“target_interval_list_name”: “test interval2”,
“filter_name”: “LFP 0-400 Hz”,
“filter_sampling_rate”: 30000,




}
LFPV1.populate(lfpv1_key)  # Also populates LFPOutput
```

The Merge Table can also be populated with keys from common_ephys.LFP.

`python
common_keys_CH = CommonLFP.fetch(limit=3, as_dict=True) # CH61
LFPOutput.insert1(common_keys_CH[0], skip_duplicates=True)
LFPOutput.insert(common_keys_CH[1:], skip_duplicates=True)
common_keys_J1 = CommonLFP.fetch(limit=3, offset=80, as_dict=True) # J16
LFPOutput.insert(common_keys_J1, skip_duplicates=True)
`

merge_view shows a union of the master and all part tables.

`python
LFPOutput.merge_view()
LFPOutput.merge_view(restriction=lfpv1_key)
`

UUIDs help retain unique entries across all part tables. We can fetch NWB file
by referencing this or other features.

```python
uuid_key = LFPOutput.fetch(limit=1, as_dict=True)[-1]
restrict = LFPOutput & uuid_key
result1 = restrict.fetch_nwb()

nwb_key = LFPOutput.merge_restrict(nwb_file_dict).fetch(as_dict=True)[0]
result2 = (LFPOutput & nwb_key).fetch_nwb()
```

There are also functions for retrieving part/parent table(s) and fetching data.

	These get functions will either return the part table of the Merge table or
the parent table with the source information for that part.

	This fetch will collect all relevant entries and return them as a list in
the format specified by keyword arguments and one’s DataJoint config.

`python
result4 = LFPOutput.merge_get_part(restriction=common_keys_CH[0],join_master=True)
result5 = LFPOutput.merge_get_parent(restriction='nwb_file_name LIKE "CH%"')
result6 = result5.fetch('lfp_sampling_rate') # Sample rate for all CH* files
result7 = LFPOutput.merge_fetch("filter_name", "nwb_file_name")
result8 = LFPOutput.merge_fetch(as_dict=True)
`

When deleting from Merge Tables, we can either…

	delete from the Merge Table itself with merge_delete, deleting both
the master and part.

	use merge_delete_parent to delete from the parent sources, getting rid of
the entries in the source table they came from.

	use delete_downstream_merge to find Merge Tables downstream and get rid
full entries, avoiding orphaned master table entries.

The two latter cases can be destructive, so we include an extra layer of
protection with dry_run. When true (by default), these functions return
a list of tables with the entries that would otherwise be deleted.

```python
LFPOutput.merge_delete(common_keys_CH[0])  # Delete from merge table
LFPOutput.merge_delete_parent(restriction=nwb_file_dict, dry_run=True)
delete_downstream_merge(


table=CommonLFP, restriction=common_keys_CH[0], dry_run=True





)




            

          

      

      

    

  

    
      
          
            
  # Session groups

A session group is a collection of sessions. Each group has a name (primary key)
and a description.

```python
from spyglass.common import SessionGroup

Create a new session group
SessionGroup.add_group(‘test_group_1’, ‘Description of test group 1’)

Get the table of session groups
SessionGroup()

Add a session to the group
SessionGroup.add_session_to_group(’RN2_20191110_.nwb’, ‘test_group_1’)

Remove a session from a group
SessionGroup.remove_session_from_group(’RN2_20191110_.nwb’, ‘test_group_1’)

Get all sessions in group
SessionGroup.get_group_sessions(‘test_group_1’)

Update the description of a session group
SessionGroup.update_session_group_description(‘test_group_1’, ‘Test description’)
```



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





